MP1 강화학습 - 1 <Markov 개념> 강화학습은 인공지능의 한 분야로 분류된다. 강화학습이라는 단어를 뜯어보면 강화 + 학습으로 나누어진다. 즉, 강화학습은 학습을 하는 주체가 있고, 학습을 하는 이유는 무엇인가를 강화하기 위함이라고 생각해볼 수 있다. 강화학습은 어떤 환경(Environment)에서 어떤 주체가(Agent) 최대의 보상(Reward)를 얻을 수 있도록 정책(Policy)을 학습하는 기법을 일컫는다. 여기서 환경과 주체는 현실에서 주어지는 문제이고, 보상은 개발자가 정의하는 것 그리고 정책은 주체가 보상을 받도록 하는 행동을 결정하는 기준을 말한다. 강화학습도 여타 다른 알고리즘과 같이 현실의 문제를 해결하기 위한 도구이다. 강화학습을 현실 문제를 풀 기위한 도구로 사용하는데 있어, 가장 기본 배경 개념은 Markov Dec.. 2021. 11. 27. 이전 1 다음