728x90
반응형
직교벡터 분해
- 목표벡터와 기준벡터가 주어졌을 때, 목표벡터를 평행벡터와 수직벡터로 분할하는 것이다.
- 이때, 평행벡터는 기준벡터에 평행하며 수직벡터는 기준벡터에 수직한다.
직교벡터 분해과정
- 다음과 같이 목표벡터 b, 기준벡터 a가 주어졌다고 하자.
- 이때 목표벡터 b의 평행벡터는 a에 스칼라 beta를 곱해준 것으로 표현된다.
- 목표벡터 b의 수직벡터는 기준벡터와 평행벡터의 차이로 표현된다.
- 평행벡터와 수직벡터는 내적 시, 0이 된다. 이를 활용해 beta를 계산할 수 있다.
- beta를 계산하면 평행벡터를 계산할 수 있다.
- 평행벡터를 계산하면 수직벡터를 계산할 수 있다.
수직 벡터를 구하는 과정을 직교화(Orthogonalize) 라고도 지칭한다. 이는 그람 슈미트 구현 시 사용된다.
간단하지만, 향 후 정리할 선형대수의 중요한 개념들에 기본 지식이므로 잘 이해하자.
728x90
반응형
'개념공부 > 선형대수' 카테고리의 다른 글
[선형대수] 일반선형모델 및 최소제곱법 (0) | 2024.01.15 |
---|---|
[선형대수] 행 축소와 LU 분해 (0) | 2024.01.15 |
[선형대수] 직교행렬과 QR분해 (0) | 2024.01.09 |
[선형대수] 행렬 계수란(Rank) (1) | 2024.01.05 |
[선형대수] 행렬 Norm, 행렬공간 (1) | 2024.01.05 |