imageclassification1 [CS231n ] Lecture 2. Image Classification 정리 1. 1-1. KNN과 Linear Classifier은 Image Classifier이다. 1-2. Classifier를 학습할 때 사용되는 데이터 셋은 대표적으로 Train/Validation/Test 로 구성한다. 필수는 아니다. 1-3. Validation Set은 모델의 가중치를 학습하는데 사용되고, 모델의 가중치는 모수(Parameter)이다. (초모수(Hyperparameter)가 아니다.) 2. 모수와 초모수의 차이는? 모수(Parameter)는 데이터로 모델을 학습시킬 때 변화되는 모델의 값이고, 초모수(Hyperparameter)는 학습 전에 개발자가 결정하는 값이다. 3. 2,000개의 흑백 이미지가 있고, 이미지의 크기는 100 x 150 이다. 모든 이미지는 자동차, 비행기, 고양.. 2020. 10. 6. 이전 1 다음