행축소1 [선형대수] 행 축소와 LU 분해 행 축소와 LU분해는 이전 글인 QR분해와 함께 행렬을 두개의 행렬로 분해하는 방법이다. 이들은 선형대수에서 최소제곱모델, 연립방정식, 역행렬 계산 등에서 활용되며 상대적으로 수치 안정적인 방법을 제공한다. QR분해는 다음 글을 참고하자.(https://iridescentboy.tistory.com/163) 본 페이지에서는 LU 분해와 관련 개념인 행 축소를 다룬다. 행 축소를 다루기 위해 먼저, 행렬연립방정식을 보자. 행렬방정식 2개 이상의 방정식은 행렬을 사용해 표현할 수 있다. 예를 들어, 아래 왼쪽의 2개 방정식은 x, y 변수로 구성되어 있다. 이를 행렬 방정식으로 변경하면 오른쪽과 같다. 행렬방정식을 먼저 제시한 이유는, 행 축소와 LU 분해가 행렬 방정식을 수치 안정적으로 푸는데 도움이 되기.. 2024. 1. 15. 이전 1 다음